'x Change Point Detection in Multiple
Independent Time Series
p

I g Geometric-Based Pruning Rules for

OMPUTO

ISSN 2824-7795

Liudmila Pishchagina1 Université Paris-Saclay, CNRS, Univ Evry, LaMME, France
Guillem Rigaill Université Paris-Saclay, CNRS, Univ Evry, LaMME, INRAE, IPS2, France
Vincent Runge Université Paris-Saclay, CNRS, Univ Evry, LaMME, France

Date published: 2023-06-05 Last modified: 2023-06-21

Abstract

We consider the problem of detecting multiple changes in multiple independent time series.
The search for the best segmentation can be expressed as a minimization problem over a given
cost function. We focus on dynamic programming algorithms that solve this problem exactly.
When the number of changes is proportional to data length, an inequality-based pruning rule
encoded in the PELT algorithm leads to a linear time complexity. Another type of pruning, called
functional pruning, gives a close-to-linear time complexity whatever the number of changes, but
only for the analysis of univariate time series. We propose a few extensions of functional pruning
for multiple independent time series based on the use of simple geometric shapes (balls and
hyperrectangles). We focus on the Gaussian case, but some of our rules can be easily extended
to the exponential family. In a simulation study we compare the computational efficiency of
different geometric-based pruning rules. We show that for small dimensions (2, 3, 4) some of
them ran significantly faster than inequality-based approaches in particular when the underlying
number of changes is small compared to the data length.

Keywords: multivariate time series, multiple change point detection, dynamic programming, func-
tional pruning, computational geometry

Contents

Introduction 2

1 Functional Pruning for Multiple Time Series 3
1.1 Modeland Cost e 3
1.2 Functional Pruning Dynamic Programming Algorithm 4
1.3 Geometric Formulation of Functional Pruning 5

2 Geometric Functional Pruning Optimal Partitioning
2.1 General Principle of GeomFPOP

3 Approximation Operators n; and \; 9
3.1 S-type Approximationo 10
3.2 R-type Approximation 10

!Corresponding author: liudmila.pishchagina@univ-evry.fr

mailto:liudmila.pishchagina@univ-evry.fr

4 Simulation Study of GeomFPOP 12

4.1 The Number of Change Point Candidates stored over Time 13
4.2 Empirical Time Complexity of GeomFPOP 13
43 Empirical Time Complexity of a Randomized GeomFPOP 13
44 Empirical Complexity of the Algorithm as a Functionofp 14
4.5 Run Time as a Function of the Number of Segments 16
Acknowledgments 16
5 Supplements 16
5.1 Examples of Likelihood-Based Cost Functions 16
52 Arrangement of Two p-ballsinRP 17
5.3 Intersection and Inclusion Tests 17
54 Proofof Proposition3.2 19
5.5 Optimization Strategies for GeomFPOP (R-type) 19
References 20
Introduction

A National Research Council report (Data et al. 2013) has identified change point detection as one
of the “inferential giants” in massive data analysis. Detecting change points, either a posteriori or
online, is important in areas as diverse as bioinformatics (Olshen et al. 2004; Picard et al. 2005),
econometrics (Bai and Perron 2003; Aue et al. 2006), medicine (Bosc et al. 2003; Staudacher et al.
2005; Malladi, Kalamangalam, and Aazhang 2013), climate and oceanography (Reeves et al. 2007;
Ducré-Robitaille, Vincent, and Boulet 2003; Killick, Fearnhead, and Eckley 2012; Naoki and Kurths
2010), finance (Andreou and Ghysels 2002; Fryzlewicz 2014), autonomous driving (Galceran et al.
2017), entertainment (Rybach et al. 2009; Radke et al. 2005; Davis, Lee, and Rodriguez-Yam 2006),
computer vision (Ranganathan 2012) or neuroscience (Jewell, Fearnhead, and Witten 2019). The most
common and prototypical change point detection problem is that of detecting changes in mean of a
univariate Gaussian signal and a large number of approaches have been proposed to perform this task
(see among many others (Yao 1984; Lebarbier 2005; Harchaoui and Lévy-Leduc 2010; Frick, Munk,
and Sieling 2013; Anastasiou and Fryzlewicz 2022) and the reviews (Truong, Oudre, and Vayatis 2020;
Aminikhanghahi and Cook 2017)).

Penalized cost methods. Some of these methods optimize a penalized cost function (see for example
(Lebarbier 2005; Auger and Lawrence 1989; Jackson et al. 2005; Killick, Fearnhead, and Eckley 2012;
Rigaill 2010; Maidstone et al. 2017). These methods have good statistical guarantees (Yao 1984;
Lavielle and Moulines 2000; Lebarbier 2005) and have shown good performances in benchmark
simulation (Fearnhead, Maidstone, and Letchford 2018) and on many applications (Lai et al. 2005;
Liehrmann, Rigaill, and Hocking 2021). From a computational perspective, they rely on dynamic
programming algorithms that are at worst quadratic in the size of the data, n. However using
inequality-based and functional pruning techniques (Rigaill 2010; Killick, Fearnhead, and Eckley
2012; Maidstone et al. 2017) the average run times are typically much smaller allowing to process
very large profiles (n > 10°) in a matter of seconds or minutes. In detail, for one time series:

« if the number of change points is proportional to n both PELT (inequality-based pruning)
and FPOP (functional pruning) are on average linear (Killick, Fearnhead, and Eckley 2012;
Maidstone et al. 2017);

« if the number of change points is fixed, FPOP is quasi-linear (on simulations) while PELT is
quadratic (Maidstone et al. 2017).

Multivariate extensions. In this paper we focus on the multivariate problem assuming the cost function
or log-likelihood of a segment (denoted %) can be decomposed as a sum over all p dimensions.
Informally that is

4
G (segment) = Z @ (segment, time series k) .
k=1

In this context, the PELT algorithm can easily be extended for multiple time series. However, as
for the univariate case, it will be algorithmically efficient only if the number of change points non-
neglectible compare to n. In this paper, we study the extension of functional pruning techniques (and
more specifically FPOP) to the multivariate case.

At each iteration, FPOP updates the set of parameter values for which a change position 7 is optimal.
As soon as this set is empty the change is pruned. For univariate time series, this set is a union of
intervals in R. For multi-parametric models, this set is equal to the intersection and difference of
convex sets in R? (Runge 2020). It is typically non-convex, hard to update, and deciding whether it is
empty or not is not straightforward.

In this work, we present a new algorithm, called Geometric Functional Pruning Optimal Partitioning
(GeomFPOP). The idea of our method consists in approximating the sets that are updated at each
iteration of FPOP using simpler geometric shapes. Their simplicity of description and simple updating
allow for a quick emptiness test.

The paper has the following structure. In Section 1 we introduce the penalized optimization problem
for segmented multivariate time series. We then review the existing pruned dynamic programming
methods for solving this problem. We define the geometric problem that occurs when using functional
pruning. The new method, called GeomFPOP, is described in Section 2 and based on approximating
intersection and exclusion set operators. In Section 3 we introduce two approximation types (sphere-
like and rectangle-like) and define the approximation operators for each of them. We then compare
in Section 4 the empirical efficiency of GeomFPOP with PELT on simulated data.

1 Functional Pruning for Multiple Time Series

1.1 Model and Cost

We consider the problem of change point detection in multiple time series of length n and dimension
p. Our aim is to partition time into segments, such that in each segment the parameter associated
to each time series is constant. For a time series y we write y = y;., = (31, ..., ¥,) € (RP)" with
yik the k-th component of the p-dimensional point y; € R? in position i in vector y;.,. We also
use the notation y;.; = (3, ..., ¥;) to denote points from index i to j. If we assume that there are M
change points in a time series, this corresponds to time series splits into M + 1 distinct segments.
Each segment m € {1, ..., M + 1} is generated by independent random variables from a multivariate
distribution with the segment-specific parameter 6,, = (61, ..., 6h) € RP. A segmentation with M
change points is defined by the vector of integers 7 = (ry = 0,7y, ..., T Tare1 = n). Segments are
given by the sets of indices {z; + 1, ..., 7;,1} with i in {0, 1,..., M}.

We define the set S; of all possible change point locations related to the segmentation of data points
between positions 1 to t as

Sy ={t = (19sT1s o » TMp TM41) € NM+2|0 = Ty <11 < <1y < Tppe1 =t}

Usually the number of changes M is unknown, and has to be estimated. Many approaches to detecting
change points define a cost function for segmentation using the opposite log-likelihood (times two).
Here the opposite log-likelihood (times two) linked to data point y; is given by function 6 — (0, y)),
where 6 = (0%, ...,0P) € RP. Over a segment from i to t, the parameter remains the same and the
segment cost € is given by

t t P
€(p:0) = min 3 00, y) = min (Z (0, y}‘)) , (1)
J=i

=i \k=1

with o the atomic likelihood function associated with Q for each univariate time series. This
decomposition is made possible by the independence hypothesis between dimensions. Notice that
function w could have been dimension-dependent with a mixture of different distributions (Gauss,
Poisson, negative binomial, etc.). In our study, we use the same data model for all dimensions.

We consider a penalized version of the cost by a penalty § > 0, as the zero penalty case would lead to
segmentation with n segments. Summing over all segments we end up with a penalty that is linear in
the number of segments. Such choice is common in the literature (Yao 1988; Killick, Fearnhead, and
Eckley 2012) although some other penalties have been proposed (Zhang and David 2007; Lebarbier

2005; Verzelen et al. 2020). The optimal penalized cost associated with our segmentation problem is
then defined by

M
Qn = min 3 {E(1):n,,) + B @)
" i=0
The optimal segmentation 7 is obtained by the argminimum in Equation 2.

1.2 Functional Pruning Dynamic Programming Algorithm

The idea of the Optimal Partitioning (OP) method (Jackson et al. 2005) is to search for the last
change point defining the last segment in data y; .; at each iteration (with Qy = 0), which leads to the
recursion:

Oy = min }(Qi + C(Wi1:0) + ﬁ) .

i€{0,...t—1

Functional description. In the FPOP method we introduce a last segment parameter 6 = (6, ..., 6P) in
R? and define a functional cost 6 — Q,(0) depending on 6, that takes the following form:

M-1 t
Q) = min (Y (6Gtganie,)+ B+ Y, 0% +p).
t =0 j=rp+1

As explained in Maidstone et al. (2017), we can compute the function Q,,;(-) based only on the
knowledge of Q,() as for each integer ¢ from 0 to n — 1. We have:

Q14+1(0) = min{Qy(0), m; + B} + Q(0, yi41) s 3)

for all § € R?, with m; = minyQy(f) and the initialization Qy(6) = 0, so that Q;(8) = Q(6, y;). By
looking closely at this relation, we see that each function Q; is a piece-wise continuous function
consisting of at most ¢ different functions on R?, denoted gj:

Q(6) = min_{gi(0)} ,

i€{l,...,t}

where the ¢} functions are given by explicit formulas:

t
GO =mi_1+p+),Q0.y), 0€RP, i=1_.1
j=i

and

Moy =minQ (@) = _min lmingl). @)

It is important to notice that each g} function is associated with the last change point i — 1 and the
last segment is given by indices from i to t. Consequently, the last change point at step tin y; .; is
denoted as 7; (7; < t — 1) and is given by

7; = Argmin {min qf(@)} -1
ief1,..t} \OeR?

Backtracking. Knowing the values of 7; for all t = 1,...,n, we can always restore the optimal
segmentation at time n for y;.,. This procedure is called backtracking. The vector cp(n) of ordered
change points in the optimal segmentation of y; ., is determined recursively by the relation cp(n) =
(cp(%,), T,) with stopping rule cp(0) = @.

Parameter space description. Applying functional pruning requires a precise analysis of the recursion
(3) that depends on the property of the cost function Q. In what follows we consider three choices
based on a Gaussian, Poisson, and negative binomial distribution for data generation. The exact
formulas of these cost functions are given in Section 5.1.

We denote the set of parameter values for which the function gi(-) is optimal as:

Zl =10 e RPIQ0) = (O}, i=1,....t.

The key idea behind functional pruning is that the Z are nested (Z.,; C Z/) thus as soon as we can
prove the emptiness of one set Z/, we delete its associated g¢ function and do not have to consider
its minimum anymore at any further iteration (proof in Section 1.3). In dimension p = 1 this is
reasonably easy. In this case, the sets Zti (i=1,...,1) are unions of intervals and an efficient functional
pruning rule is possible by updating a list of these intervals for Q,. This approach is implemented in
FPOP (Maidstone et al. 2017).

In dimension p > 2 it is not so easy anymore to keep track of the emptiness of the sets Z/. We
illustrate the dynamics of the Z sets in Figure 1 in the bi-variate Gaussian case. Each color is
associated with a set Z (corresponding to a possible change at i — 1) for t equal 1 to 5. This plot
shows in particular that sets Z/ can be non-convex.

quadratics
| 1

BEO0OO
O AW

t=1 t

2

Figure 1: The sets Z over time for the bi-variate independent Gaussian model on time series without
change y = ((0.29,1.93),(1.86,—0.02),(0.9,2.51),(—1.26,0.91),(1.22,1.11)). From left to right we
represent at time ¢ = 1,2, 3, 4, and 5 the parameter space (9!, 6%). Each Z/ is represented by a color.
The change 1 associated with quadratics 2 is pruned at t = 3. Notice that each time sequence of Z
with i fixed is a nested sequence of sets.

1.3 Geometric Formulation of Functional Pruning

To build an efficient pruning strategy for dimension p > 2 we need to test the emptiness of the sets
Z} at each iteration. Note that to get Z/ we need to compare the functional cost g; with any other
functional cost q] ,j=1,...,t, j # i. This leads to the definition of the following sets.

Definition 1.1. We define S-type set S; using the function Q as

j
Si=10 € RP| Z Q0,y,) <mj—m; , wheni<j
u=i+1

and S! = RP. We denote the set of all possible S-type sets as S.

To ease some of our calculations, we now introduce some additional notations. For 8 = (91, ...,6?) in
RP, 1 < i< j < nwe define p univariate functions ok s{;(ek) associated to the k-th time series as

J
k@ = > w@k b, k=1,...p. (5)

u=i+1

We introduce a constant A;; and a function 6 — s;;(6):

Aijz mj—m,-,

&\ ok (6)
Sij(e) = Z sij(e) — Aij,
k=1
where m; and m; are defined as in Equation 4. The sets Sji- for i < jare also described by relation
i _ 1

In Figure 2 we present the level curves for three different parametric models given by s;; L{w}) with
wa real number. Each of these curves encloses an S-type set.

At time t = 1,...,n we define the following sets associated to the last change point index i — 1:

-past set P!
P ={S,u=1,..,i—1}.

(a) (b) (c)

Figure 2: Three examples of the level curves of a function s;; for bi-variate time series {x, y}. We use
the following simulations for univariate time series : (a) x ~ 4(0,1), y ~ 47(0,1), (b) x ~ P(1),
y~P3), () x ~ V¥ B(0.5,1), y ~ ¥ B(0.3,1).

-future set F!(t)
F@)=1{S, v=i,..,t}.

We denote the cardinal of a set & as |&/|. Using these two sets of sets, the Z' have the following
description.

Proposition 1.1. At iterationt, the functional cost Q,(-) defines the subsets Z} (i = 1,...,t), each of them
being the intersection of the sets in F'(t) minus the union of the sets in J".

Proof. Based on the definition of the set Z/, the proof is straightforward. Parameter value 0is in Z;
if and only if g;(0) < gf(0) for all u # i; these inequalities define the past set (when u < i) and the
future set (when u > i). By convention we assume that, in case i = t, ngegri()S = RP.

O]

Corollary 1.1. The sequence ' = (Z});>; is a nested sequence of sets.

Indeed, Z., ; is equal to Z with an additional intersection in the future set. Based on Corollary 1.1,
as soon as we prove that the set Z/, is empty, we delete its associated g} function and, consequently,
we can prune the change point i — 1. In this context, functional and inequality-based pruning have a
simple geometric interpretation.

Functional pruning geometry. The position i — 1 is pruned at step t + 1, in Q;, {(-), if the intersection
set of Ngegi()S is covered by the union set uge giS.

Inequality-based pruning geometry. The inequality-based pruning of PELT is equivalent to the
geometric rule: position i — 1 is pruned at step ¢ + 1 if the set S} is empty. In that case, the intersection
set Ngegi(y)S is empty, and therefore 7} is also empty using Equation 8. This shows that if a change is
pruned using inequality-based pruning it is also pruned using functional pruning. For the dimension
p = 1 this claim was theoretically proved in Maidstone et al. (2017).

The construction of set Z/ using Proposition 1.1 is illustrated in Figure 3 for a bi-variate independent
Gaussian case: we have the intersection of three S-type sets and the subtraction of three S-type sets.

y1

Figure 3: Examples of building a set Z' with |#!| = |#!(t)| = 3 for the Gaussian case in 2-D
(1 = 0,0 = 1). The green disks are S-type sets of the past set '. The blue disks are S-type sets of
the future set F'(t).

2 Geometric Functional Pruning Optimal Partitioning

2.1 General Principle of GeomFPOP

Rather than considering an exact representation of the Z/, our idea is to consider a hopefully slightly
larger set that is easier to update. To be specific, for each Z/ we introduce Z}, called testing set,
such that Z} ¢ Z/. If at time t Z] is empty thus is Z/ and thus change i — 1 can be pruned. From
Proposition 1.1 we have that starting from Z = R? the set Z/ is obtained by successively applying
two types of operations: intersection with an S-type set S (Z n S) or subtraction of an S-type set S
(Z\S). Similarly, starting from Z = R? we obtain Z by successively applying approximation of
these intersection and subtraction operations. Intuitively, the complexity of the resulting algorithm
is a combination of the efficiency of the pruning and the easiness of updating the testing set.

A Generic Formulation of GeomFPOP. In what follows we will generically describe GeomFPOP, that
is, without specifying the precise structure of the testing set Z/. We call Z the set of all possible Z}
and assume the existence of two operators n; and \ ;. We have the following assumptions for these
operators.

Definition 2.1. The two operators n; and \; are such that:

the left input is a Z-type set (that is an element of Z);
the right input is a S-type set;

the output is a Z-type set;
ZnSCZnZSandZ\SCZ\ZS.

Ll e

We give a proper description of two types of testing sets and their approximation operators in
Section 3.

At each iteration t GeomFPOP will construct Z',; from Z}, P! and, F'(¢t) iteratively using the two
operators n; and \ ;. To be specific, we define Sf the j-th element of F'(t) and Sfp the j-th element of
P, we use the following iteration:

j=1.,IF @I,

Ag=17}, Aj=Ajqn;S,

B():A|gi(t)|, Bj:Bj—l \Z Sé), j: 1,...,|<@i|,
and define Z/, | = B, gi. Using the fourth property of Definition 2.1 and Proposition 1.1, we get that
at any time of the algorithm Z/ contains Z.

The pseudo-code of this procedure is described in Algorithm 1. The select(&) step in Algorithm 1,
where &/ C S, returns a subset of &/ in S. By default, select() := 4.

Algorithm 1 Geometric update rule of Z;

procedure UPDATEZONE(~ti_1, P .G/"'i(t), i,1)
Zez
for S € select(F(t)) do
L Zl 7} n;S
for S € select(9") do
L Z; <—~ Ztl \ZS
return 7}

We denote the set of candidate change points at time f as 7;. Note that for any (i — 1) € 7; the sum of
|2 and |F'(2)| is || With the default select() procedure we do O(p|r;|) operations in Algorithm 1.
By limiting the number of elements returned by select() we can reduce the complexity.

Remark. For example, if the operator o/ — select(), regardless of |o/|, always returns a subset
of constant size, then the overall complexity of GeomFPOP is at worst equal to that of PELT with
Y, O(pln]) time complexity.

Using this updatezone() procedure we can now informally describe the GeomFPOP algorithm. At
each iteration the algorithm will:

1. find the minimum value for Q;, m; and the best position for last change point 7; (note that this
step is standard: as in the PELT algorithm we need to minimize the cost of the last segment
defined in Equation 1);

2. compute all sets Z using Z'_;, %', and F'(t) with the updatezone() procedure;

3. remove changes such that Z] is empty.

To simplify the pseudo-code of GeomFPOP, we also define the following operators:

1. bestCost&Tau(t) operator returns two values: the minimum value of Q;, m;, and the best
position for last change point 7; at time ¢ (see Section 1.2);

2. getPastFutureSets(i,t) operator returns a pair of sets (F'(t), %) for change point candidate
i— 1 at time t;

3. backtracking(z,n) operator returns the optimal segmentation for y; .,,.

The pseudo-code of GeomFPOP is presented in Algorithm 2.

Algorithm 2 GeomFPOP algorithm

procedure GEoMFPOP(y, Q(-,), p)
mg <0, Q) <0, <@ {Z ik, <R
fort=1,...,ndo
Q0) « min{Q,1(6),m—; + B} + Q(0, 1)
(my;, 7;) < bestCost&Tau(t)
fori—1€erndo
(P, Fi(t)) < getPastFutureSets(i,t)
Z,_f « updat eZone(Zti_l, PLFD),i,t)
if Z = @ then
C nen\i-1

e (g t—1)
return cp(n) < backtracking(z,n)

3 Approximation Operators n; and \;

The choice of the geometric structure and the way it is constructed directly affects the computational
cost of the algorithm. We consider two types of testing set Z € Z, a S-type set S € S (see Definition 1.1)
and a hyperrectangle R € R defined below.

Definition 3.1. Given two vectors in R?, [and 7 we define the set R, called hyperrectangle, as:

R = [, 7] % -+ x [1, 7] -

We denote the set of all possible sets R as R.

To update the testing sets we need to give a strict definition of the operators n; and \; for each
type of testing set. To facilitate the following discussion, we rename them. For the first type of
geometrlc structure, we rename the testing set Z as S, the operators n; > and \; as ng and \s and
Z-type approximation as S-type approximation. And, likewise, we rename the testing set Z as R, the
operators n; and \; as ng and \p and Z-type approximation as R-type approximation for the second
type of geometric structure.

3.1 S-type Approximation

With this approach, our goal is to keep track of the fact that at time t = 1,...,n there is a pair of
changes (u;, uy), with u; < i < uy < tsuch that SLZ C S or there is a pair of changes (v,), with
i <wv; <y <tsuch that Sf,l n S‘i,2 is empty. If at time t at least one of these conditions is met, we can
guarantee that the set Sis empty, otherwise, we propose to keep as the result of approximation the
last future S-type set S/, because it always includes the set Z;. This allows us to quickly check and
prove (if S = @) the emptiness of set Z.

We consider two generic S-type sets, S and S from S, described as in Definition 1.1 by the functions s
and s:

p p
s@) =Y KO -A, §0) =) FEH-A.
k=1 k=1

Definition 3.2. For all Sand Sin S we define the operators ng and \g as:

10

. o, ifSnS=0,
S ns S = ~
S, otherwise .

D, ifScs,

5 NS S =3.
S, otherwise.

As a consequence, we only need an easy way to detect any of these two geometric configurations:
SnSand ScCS.

In the Gaussian case, the S-type sets are p-balls and an easy solution exists based on comparing radii
(see Section 5.2 for details). In the case of other models (as Poisson or negative binomial), intersection
and inclusion tests can be performed based on a solution using separative hyperplanes and iterative
algorithms for convex problems (see Section 5.3). We propose another type of testing set solving all
types of models with the same method.

3.2 R-type Approximation

Here, we approximate the sets Z/ by hyperrectangles R: € R. A key insight of this approximation is
that given a hyperrectangle R and an S-type set S we can efficiently (in O(p) using Proposition 3.2)
recover the best hyperrectangle approximation of Ru Sand R\ S. Formally we define these operators
as follows.

Definition 3.3. For all R,R € R and S € S we define the operators ng and \y as:

RoRS = nipipascriR s

RA\RS = ngpascriR-

We now explain how we compute these two operators. First, we note that they can be recovered by
solving a 2p one-dimensional optimization problems.

Proposition 3.1. The k-th minimum coordinates I, and maximum coordinates F, of R=Rng S (resp.
R =R\gS) is obtained as

min or max 6,
0eR ng]R

I or i = subject to es(0) <0,)
L<0;<r, j=1...p,
withe =1 (resp. € = —1).
To solve the previous problems (¢ = 1 or —1), we define the following characteristic points.

Definition 3.4. Let S € S, described by function s(6) = 25:1 sk(6%) — A from the family of functions
(6), with 6 € RP. We define the minimal point ¢ € R of S as:

c= {ck}k:Lm,p, with k= Argérergin{sk(Gk)}. (10)

Moreover, with R € R defined through vectors [,r € R?, we define two points of R, the closest point
m € R? and the farthest point M € R? relative to S as

11

m = {mk}k:h“’p, with mk = 12;%:2:]{1 {sk(ek)},

M = (MK} , with Mk= Argmax G
{ }k_l,...,p [k<pkeark { }
Remark. In the Gaussian case, Sis a ball in R? and

« c is the center of the ball;
« m is the closest point to ¢ inside R;
« M is the farthest point to ¢ in R.

(a) (b) (c)

A A A
B, 5 S B
R
» » |-
0 yt o 0 yt o 0 yt o

Figure 4: Three examples of minimal point ¢, closest point m and farthest point M for bi-variate
Gaussian case: (@) RC S; (b)) RnS = @;(c) RnS = .

Proposition 3.2. Let R = Rng S (resp. R\g S), withR € R and S € S. We compute the boundaries
(I,7) of R using the following rule:

1. We define the point 0 € RP as the closest point m (resp. farthest M). For allk = 1,... p we find the
roots 051 and 0% of the one-variable (6%) equation

O+ > @) -A=0.
jzk
If the roots are real-valued we consider that OF1 < 9k2, otherwise we write [le, 9k2] =Q.

2. We compute the boundary values I* and 7 of R as:
« ForRngS(k=1,...,p):
[Zk, Fk] = [ekl,ekz] n [zk, rk] . (11)

« ForR\gS(k=1,...,p):
s (AL o]]
=

,rk R otherwise.
e :

If there is a dimension k for which [ik f'k] = @, then the set R is empty.

The proof of Proposition 3.2 is presented in Section 5.4.

12

4 Simulation Study of GeomFPOP

In this section, we study the efficiency of GeomFPOP using simulations of multivariate independent
time series. For this, we implemented GeomFPOP (with S and R types) and PELT for the Multivari-
ate Independent Gaussian Model in the R-package ‘GeomFPOP’ https://github.com/Ipishchagina/
GeomFPOP written in R/C++. By default, the value of penalty f for each simulation was defined by
the Schwarz Information Criterion proposed in Yao (1984) (8 = 2plogn).

Overview of our simulations. First, as a quality control we made sure that the output of PELT and
GeomFPOP were identical on a number of simulated profiles. Second, we studied cases where the
PELT approach is not efficient, that is when the data has no or few changes relative to n. Indeed, it
was shown in Killick, Fearnhead, and Eckley (2012) and Maidstone et al. (2017) that the run time
of PELT is close to O(n?) in such cases. So we considered simulations of multivariate time series
without change (only one segment). By these simulations we evaluated the pruning efficiency of
GeomFPOP (using S and R types) for dimension 2 < p < 10 (see Figure 5 in Section 4.1). For small
dimensions (2 < p < 4) we also evaluated the run time of GeomFPOP and PELT and compare them
(see Figure 6 in Section 4.2). In addition, we considered another approximation of the Z/ where we
applied our ng and \ operators only for a randomly selected subset of the past and future balls. In
practice, this strategy turned out to be faster computationally than the full/original GeomFPOP and
PELT (see Figure 7 in Section 4.3). For this strategy we also generated time series of a fixed size (10°
data points) and varying number of segments and evaluated how the run time vary with the number
of segments for small dimensions (2 < p < 4). Our empirical results confirmed that the GeomFPOP
(R-type: random/random) approach is computationally comparable to PELT when the number of
changes is large (see Figure 9 in Section 4.5).

4.1 The Number of Change Point Candidates stored over Time

We evaluate the functional pruning efficiency of the GeomFPOP method using simulations with 10*
data points (without change, i.e. i.i.d .#}(0,I,)). For such signals, PELT typically does not pruned
(e.g. for t = 104, p = 2 it stores almost always t candidates).

We report in Figure 5 the percentage of candidates that are kept by GeomFPOP as a function of n, p
and the type of pruning (R or S). Regardless of the type of approximation and contrary to PELT, we
observe that there is some pruning. However when increasing the dimension p, the quality of the
pruning decreases.

Comparing Figure 5 left and the right we see that for dimensions p = 2 to p = 5 R-type prunes more
than the S-type, while for larger dimensions the S-type prunes more than the R-type. For example,
for p = 2 at time t = 10* by GeomFPOP (R-type) the number of candidates stored over ¢ does not
exceed 1% versus 3% by GeomFPOP (S-type). This intuitively makes sense. One the one hand the
R-type approximation of a sphere gets worst with the dimension. On the other hand with R-type
approximation every new approximation is included in the previous one. For small dimensions this
memory effect outweight the roughness of the approximation.

Based on these results we expect that R-type pruning GeomFPOP will be more efficient than S-type
pruning for small dimensions.

4.2 Empirical Time Complexity of GeomFPOP

We studied the run time of GeomFPOP (S and R-type) and compared it to PELT for small dimensions
(p = 2,3,4). Run times were limited to three minutes and were recorded for simulations (without
change, i.e iid /#}(0, I,)). The results are presented in Figure 6. We observe that GeomFPOP is faster

13

https://github.com/lpishchagina/GeomFPOP
https://github.com/lpishchagina/GeomFPOP

GeomFPOP (R-type) GeomFPOP (S-type) Dimension

10°%
S .
= 10"
g
9o
=
©
o

1072

10° 10" 10° 10° 10* 10° 10" 10? 10° 10*

Time

Figure 5: Percentage of candidate change points stored over time by GeomFPOP with R (left) or S
(right) type pruning for dimension p = 2,...,10. We simulated 100 i.i.d Gaussian data .#},(0, I,,) and

report the average.

than PELT only for p = 2. For p = 3 run times are comparable and for p = 4 GeomFPOP is slower.
This lead us to consider a randomized version of GeomFPOP (see next subsection).

p=2 p=3 p=4

3 minutes

Seconds

10° 10* 10° 10% 10° 10* 10% 10% 10° 10* 10° 10
Number of data points of time series

Method — GeomFPOP (R-type) — GeomFPOP (S-type) — PELT

Figure 6: Run time of GeomFROP (S and R types) and PELT using multivariate time series without
change points. The maximum run time of the algorithms is 3 minutes. Averaged over 100 data sets.

4.3 Empirical Time Complexity of a Randomized GeomFPOP

R-type GeomFPOP is designed in such a way that at each iteration we need to consider all past and
future spheres of change i. In practice, it is often sufficient to consider just a few of them to get an
empty set. Having this in mind, we propose a further approximation of the Z/ where we apply our
ng and \g operators only for a randomly selected subset of the past and future sets. In detail, we
propose to redefine the output of the select() function in Algorithm 1 for any sets %' and F'(¢) as:

. select(%) returns one random set from 2.
+ select(F'(t)) returns the last set S} and one random set from F'(¢).

Thus, we consider the following geometric update rule:

« (random/random) At time ¢t we update hyperrectangle:

14

1. by only two intersection operations: one with the last S-type set S} from F(t), and one
with a random S-type set from F'(¢);
2. by only one exclusion operation with a random S-type set from "

In this approach at time t we do no more than three operations to update the testing set Z/ for each
(i — 1) € 5. Even with large values of p, the overall complexity of GeomFPOP should not be worse
than that of PELT. We investigated other randomized strategies but this simple one was sufficient to
significantly improve run times. The run time of our optimization approach and PELT in dimension
(p =2,...,10,100) are presented in Figure 7. As in Section 4.2, run times were limited to three minutes
and were recorded for simulations of length ranging from 219 to 223 data points (without change, i.e

ii.d 0, I,)).

Although the (random/random) approach reduces the quality of pruning (see Section 5.5), it gives a
significant gain in run time compared to PELT in small dimensions. To be specific, with a run time of
five minutes GeomFPOP, on average, processes a time series with a length of about 8 x 10°, 10® and
2,5 x 10° data points in the dimensions p = 2,3 and 4, respectively. At the same time, PELT manages
to process time series with a length of at most 6,5 x 10* data points in these dimensions.

p=6
im 3 minutes

(2]
©
C
8 p=100
()
(4]

10%10*10°10%10” 10%10*10°10%10” 10%*10*10°10%10” 10°10*10°10%10” 10°10*10°10%10"
Number of data points of time series

Method — GeomFPOP (R-type: random / random) — PELT

Figure 7: Run time of the (random/random) approach of { GeomFPOP} (R-type) and PELT using
p-variate time series without change points (p = 2,...,10,100). The maximum run time of the
algorithms is 3 minutes. Averaged over 100 data sets.

4.4 Empirical Complexity of the Algorithm as a Function of p

We also evaluate the slope coefficient @ of the run time curve of GeomFPOP with random sampling
of the past and future candidates for all considered dimensions. In Figure 8 we can see that already
for p > 7 ais close to 2.

4.5 Run Time as a Function of the Number of Segments

For small dimensions (2 < p < 4) we also generated time series with 10® data points with increasing
number of segments. We have considered the following number of segments: (1,2,5) x 10'(for
i=0,...,3) and 10*. The mean was equal to 1 for even segments, and 0 for odd segments. In Figure 9
we can see the run time dependence of the (random/random) approach of GeomFPOP (R-type) and
PELT on the number of segments for this type of time series. Interestingly, the run time of GeomFPOP

15

214
—r”“.—-“._—__. _____
D S SO SR RO SO SOOI 7 ot i s W R s Wt s i —-
1.9 4 B
2
1.8 1 7
.
1.7 7
o .
< 187 —4.
g .
8151 L’
D 14 vl
1.3 1 -7
124 —
114—e="
w4t r r r r r 1 - r 4
1 2 3 4 5 6 7 8 9 10 100
Dimension, p

Figure 8: Run time dependence of (random/random) approach of GeomFPOP (R-type) on dimension

p.

(random/random) is comparable to PELT even when the number of segment is large. For smaller
number of segments (as already observed) GeomFPOP (random/random) is an order of magnitude

faster.
P=2 FI=3 FI=4 |
10°9 o « .
a, \- a
. AN)
4 . - ~
1071 “a ~1 .
w \- ™ l\
- B > . L
5103' » ‘\ 1\‘- ‘\
Q . N * .
C% * .- . T
107 . Tewl, RS
Lol \\t ‘o.“‘:‘.‘ l,= \‘0-\"‘/,
101_ .-.._‘.__-‘. 2 "‘.,1\%’ -
cel Ny
10 10 102 10* 10*10° 10" 10* 10° 10*10° 10 102 10° 10°

Number of segments into a time series with 10° data points

Method -= GeomFPOP (R-type : random /random) -+ PELT

Figure 9: Run time dependence of (random/random) approach of GeomFPOP (R-type) on the number
of segments in time series with 10° data points.

Acknowledgments

We thank Paul Fearnhead for fruitful discussions.

5 Supplements

5.1 Examples of Likelihood-Based Cost Functions

We define a cost function for segmentation as in Equation 1 by the function Q(, -) (the opposite log-
likelihood (times two)). Below is the expression of this function linked to data point y; = (1, .., yl-p)€
R? for three examples of Parametric Multivariate Models:

16

p
Z - 02, if y; ~ (6, 021,),

P kv,
Q(0, %) = 1 Z{ ((9 -)} ; if y; ~ 2(0), (12)
W

k
—2 Zlog ((9’0%"(1 _gky? (y +y<,f_ 1)) . ify ~ N BO.).

\ k=1 1

We suppose that the over-dispersion parameter ¢ of the Multivariate Negative Binomial distribution
is known.

5.2 Arrangement of Two p-balls in R?

We define two p-balls, Sand S’ in R? using their centers ¢, ¢’ € R and radius R, R’ € R* as

S={xeRP|x—c|?P <R?’}and & = {x e R?,||x — ¢’||* < R"?},

where ||x — ¢||* = zk 1(x — M2 with x = (x1,.., xP) € RP, is the Euclidean norm. The distance
between centers c and ¢’ is defined as d(c,c’) = +/||c — ¢’[|>. We have the following simple results:

SnS’=¢ < d(c,c’)>R+R,

ScSorS cS < d()<|R-F|.

5.3 Intersection and Inclusion Tests

Remark. For any S} € § its associated function s can be redefine after normalization by constant
j—i+1las:

s(0) = a(0) + (b, 0) + c,

with a(-) is some convex function depending on 6, b = {bk}kzl,...,p € RPandc€eR.
For example, in the Gaussian case, the elements have the following form:
. 2 k _ ovk _ w2
a-€|—>€, b _2Yi2j’ C_Yl':j_Al'j’

where Yi:j = T —it1 yu and Y T joit1 “usitl Zk:l(yu)

Definition 5.1. For all § € R” and S;, S, € S with their associated functions, s; and s,, we define a
function hy5 and a hyperplane H;, as:

h12(8) 1= 5(0) —51(0), Hyp := {6 € RP|hy2(0) = 0} .

We denote by Hf, := {0 € RP|hy,(0) > 0} and Hy, := {0 € RP|h;,(0) < 0} the positive and negative
half-spaces of Hj,, respectively. We call H the set of hyperplanes.

17

For all S € S and H € H we introduce a half — space operator.
Definition 5.2. The operator half — space is such that:

1. the left input is an S-type set S;
2. the right input is a hyperplane H;
3. the output is the half-spaces of H, such that S lies in those half-spaces.

Definition 5.3. We define the output of half — space(S, H) by the following rule:

1. We find two points, 6,6, € R?, as:

0, = Argmin s(0),
Argminh(0), if6, € HY,
92 — 0eS
Argmaxh(0), if6, € H™.
0eS

2. We have:

{H*}, if6,,0, € HY,

half — space(S,H) = {H7}, if6,,6,e H,

{H",H}, otherwise.

Lemma 5.1. S; C Hy, < 9S; C Hj,, where d(-) denote the frontier operator.
The proof of Lemma 5.1 follows from the convexity of S;.

Lemma 5.2. S; C S, (resp. Sy C S;) < S1, Sy C Hyp, (resp. S, S, C Hyy).

Proof. We have the hypothesis %, : {S; C S,}, then

$1(0) = 0, [by Definition 1.1]

0 e H 9S, C Hy,.
5(0) < 0, by, 2 T

vl € 35, i

Thus, according to Lemma 5.1, S; C Hp,.

We have now the hypothesis #, : {S;,S; C Hy,}, then

s1(0) <0, [by Definition 1.1]
vl € S, o =0eS, =3S5CC8s,.
h15(0) <0, [by #,, Definition 1.1]

Similarly, it is easy to show that S, C S; < S;,S, C Hpb.

Lemma 5.3. S; n Sy, = @ < Hj, is a separating hyperplane of S; and S,.

Proof. We have the hypothesis %, : {S; C Hj,, S; C Hi,}. Thus, Hy, is a separating hyperplane of
S; and S, then, according to its definition, S; n S, = @.

We have now the hypothesis #), : {S; n S, = @} then

18

e 51(0) <0, [by Definition 1.1] -
€ =0 € .
! $5(0) > 0, [by #,, Definition 1.1] 12

Wes $1(0) > 0, [by #,, Definition 1.1] 0c H-
= i
2 s5(0) <0, [by Definition 1.1] 12

Consequently, Hy, is a separating hyperplane of S; and S,.
O

Proposition 5.1. To detect set inclusion S; C S, and emptiness of set intersection Sy n Sy, it is necessary:

1. build the hyperplane H5;

2. apply thehalf — space operator for couples (Sy, Hy,) and (Sy, Hy5) to know in which half-space(s)
S, and Sy are located;

3. check the conditions in Lemmas 5.2 and 5.3.

5.4 Proof of Proposition 3.2
For the proof of Proposition 3.2 we need the following remark.

Remark. With set S € S the maximum and minimum values for each coordinate in S are obtained on
the axis going through minimal point c.

Proof. Letc = {ck}k:Lm)p is the minimal point of S, defined as in Equation 10. In the intersection case,
we consider solving the optimization problem (Equation 9) for the boundaries /¥ and 7k, removing
constraint [K < 0K < 7k If R intersects S, the optimal solution gk belongs to the boundary of S due to
our simple (axis-aligned rectangular) inequality constraints and we get

K@) == 0 +A. (13)

jzk

We are looking for minimum and maximum values in 6* for this equation with constraints I/ < ¢/ < r/
(j # k). Using the convexity of sk and s/, we need to maximize the quantity in the right-hand side.
Thus, the solution &/ for each ¢/ is the minimal value of ¥ izk s/(¢/) under constraint ¥ < ¢/ < r/ and
the result can only be I/, ¥/ or ¢/. This decomposition in smaller problems is made possible thanks
to our problem setting with independence. Looking at all coordinates at the same time, the values
for 6 € R? corresponds to the closest point m = {mk}kzl,...,p- Having found gkt and 6%z using 0 the
result in Equation 11 is obvious considering current boundaries Ik and %\ In exclusion case, we
remove from R the biggest possible rectangle included into Sn{V/ < & </, j # k}, which correspond
to minimizing the right hand side of Equation 13, that is maximizing) jk s/(¢/) under constraint

U < @ < ¢l (j # k). In that case, the values for 0 correspond to the greatest value returned by
2=k 8'(¢V) on interval boundaries. With convex functions ¢/, it corresponds to the farthest point

M =M
Il

19

5.5 Optimization Strategies for GeomFPOP (R-type)

In GeomFPOP(R-type) at each iteration, we need to consider all past and future spheres of change i.
As it was said in Section 4, in practice it is often sufficient to consider just a few of them to get an
empty set. Thus, we propose to limit the number of operations ng no more than two:

« last. At time t we update hyperrectangle by only one operation, this is an intersection with
the last S-type set S} from F'(t).

« random. At time t we update the hyperrectangle by only two operations. First, this is an
intersection with the last S-type set S from %(t), and second, this is an intersection with
other random S-type set from F'(¢).

The number of operations \p we limit no more than one:

« empty. At time t we do not perform \p operations.
« random. At time ¢ we update hyperrectangle by only one operation: exclusion with a random
S-type set from %"

According to these notations, the approach presented in the original GeomFPOP (R-type) has the
form (all/all). We show the impact of introduced limits on the number of change point candidates
retained over time and evaluate their run times. The results are presented in Figures 10 and 11.

Even though the (random/random) approach reduces the quality of pruning in dimensions p = 2,3
and 4, it gives a significant gain in the run time compared to the original GeomFPOP (R-type) and is
at least comparable to the (1ast/random) approach.

o
©

Ratio vglue
} /

o
o,

- .2 "

10° 10" 10® 10® 10*10° 10" 10 10®° 10*10° 10 10 10° 10
Time
A h (all 7all) (all / random) (last/ empty) (random / all) (random / random)
pproach __ (all 7empty) — (last/all) — (last/random) (random / empty)

Figure 10: Ratio number of candidate change point over time by different optimization approaches of
GeomFPOP (R-type) in dimension p = 2,3 and 4. Averaged over 100 data sets without changes with
10* data points.

3 minutes

10° 10* 10° 10®° 107 107
Number of data points of time series

(all /7 all) (all / random) (last / empty) (random / all) (random / random)
— (all/ empty) — (last/all) — (last/ random) (random / empty)

Method

Figure 11: Run time of different optimization approaches of GeomFPOP (R-type) using multivariate
time series without change points. The maximum run time of the algorithms is 3 minutes. Averaged
over 100 data sets.

20

References

Aminikhanghahi, Samaneh, and Diane J Cook. 2017. “A Survey of Methods for Time Series Change
Point Detection” Knowledge and Information Systems 51 (2): 339-67.

Anastasiou, Andreas, and Piotr Fryzlewicz. 2022. “Detecting Multiple Generalized Change-Points by
Isolating Single Ones” Metrika 85 (February). https://doi.org/10.1007/s00184-021-00821-6.

Andreou, Elena, and Eric Ghysels. 2002. “Detecting Multiple Breaks in Financial Market Volatility
Dynamics” Journal of Applied Econometrics 17 (5): 579-600. http://www jstor.org/stable/4129273.

Aue, Alexander, Lajos Horvath, Marie Huskova, and Piotr Kokoszka. 2006. “Change-Point Monitoring
in Linear Models” The Econometrics Journal 9 (3): 373-403. http://www.jstor.org/stable/23114925.

Auger, Ivan E., and Charles E. Lawrence. 1989. “Algorithms for the Optimal Identification of
Segment Neighborhoods” Bulletin of Mathematical Biology 51 (1): 39-54. https://doi.org/10.1007/
BF02458835.

Bai, Jushan, and Pierre Perron. 2003. “Computation and Analysis of Multiple Structural-Change””
Journal of Applied Econometrics 18 (January).

Bosc, Marcel, Fabrice Heitz, Jean-Paul Armspach, Izzie Namer, Daniel Gounot, and Lucien Rumbach.
2003. “Automatic Change Detection in Multimodal Serial MRI: Application to Multiple Sclero-
sis Lesion Evolution” Neurolmage 20(2), 643-56. https://doi.org/https://doi.org/10.1016/5S1053-
8119(03)00406-3.

Data, Committee, Committee Statistics, Board Applications, Division Sciences, and National Council.
2013. Frontiers in Massive Data Analysis. Frontiers in Massive Data Analysis. https://doi.org/10.
17226/18374.

Davis, Richard A., Thomas C. M. Lee, and Gabriel A. Rodriguez-Yam. 2006. “Structural Break
Estimation for Nonstationary Time Series Models” Journal of the American Statistical Association
101: 223-39. https://EconPapers.repec.org/RePEc:bes:jnlasa:v:101:y:2006:p:223-239.

Ducré-Robitaille, Jean-Francois, Lucie A. Vincent, and Gilles Boulet. 2003. “Comparison of Techniques
for Detection of Discontinuities in Temperature Series.” International Journal of Climatology 23.

Fearnhead, Paul, Robert Maidstone, and Adam Letchford. 2018. “Detecting Changes in Slope with an
L0 Penalty” Journal of Computational and Graphical Statistics, 1-11.

Frick, Klaus, Axel Munk, and Hannes Sieling. 2013. “Multiscale Change-Point Inference.” arXiv.
https://doi.org/10.48550/ARXIV.1301.7212.

Fryzlewicz, Piotr. 2014. “Wild Binary Segmentation for Multiple Change-Point Detection.” The
Annals of Statistics 42 (6). https://doi.org/10.1214/14-a0s1245.

Galceran, Enric, Alexander Cunningham, Ryan Eustice, and Edwin Olson. 2017. “Multipolicy
Decision-Making for Autonomous Driving via Changepoint-Based Behavior Prediction: Theory
and Experiment.” Autonomous Robots 41 (August). https://doi.org/10.1007/s10514-017-9619-z.

Harchaoui, Z., and C. Lévy-Leduc. 2010. “Multiple Change-Point Estimation with a Total Variation
Penalty” Journal of the American Statistical Association. 105 (492): 1480-93. http://www jstor.
org/stable/27920180.

Jackson, Brad, Jeffrey D Scargle, David Barnes, Sundararajan Arabhi, Alina Alt, Peter Gioumousis,
Elyus Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and Tun Tao Tsai. 2005. “An Algorithm
for Optimal Partitioning of Data on an Interval” IEEE Signal Processing Letters 12 (2): 105-8.

Jewell, Sean, Paul Fearnhead, and Daniela Witten. 2019. “Testing for a Change in Mean After
Changepoint Detection.” arXiv. https://doi.org/10.48550/ARXIV.1910.04291.

Killick, Rebecca, Paul Fearnhead, and Idris A. Eckley. 2012. “Optimal Detection of Changepoints with
a Linear Computational Cost” Journal of the American Statistical Association 107 (500): 1590-98.

Lai, Weil R, Mark D Johnson, Raju Kucherlapati, and Peter J Park. 2005. “Comparative Analysis of
Algorithms for Identifying Amplifications and Deletions in Array CGH Data.” Bioinformatics 21
(19): 3763-70.

Lavielle, Marc, and Eric Moulines. 2000. “Least-Squares Estimation of an Unknown Number of Shifts
in a Time Series” Journal of Time Series Analysis 21 (1): 33-59.

21

https://doi.org/10.1007/s00184-021-00821-6
http://www.jstor.org/stable/4129273
http://www.jstor.org/stable/23114925
https://doi.org/10.1007/BF02458835
https://doi.org/10.1007/BF02458835
https://doi.org/10.1016/S1053-8119(03)00406-3
https://doi.org/10.1016/S1053-8119(03)00406-3
https://doi.org/10.17226/18374
https://doi.org/10.17226/18374
https://EconPapers.repec.org/RePEc:bes:jnlasa:v:101:y:2006:p:223-239
https://doi.org/10.48550/ARXIV.1301.7212
https://doi.org/10.1214/14-aos1245
https://doi.org/10.1007/s10514-017-9619-z
http://www.jstor.org/stable/27920180
http://www.jstor.org/stable/27920180
https://doi.org/10.48550/ARXIV.1910.04291

Lebarbier, Emilie. 2005. “Detecting Multiple Change-Points in the Mean of Gaussian Process by Model
Selection.” Signal Processing 85 (April): 717-36. https://doi.org/10.1016/j.sigpro.2004.11.012.
Liehrmann, Arnaud, Guillem Rigaill, and Toby Dylan Hocking. 2021. “Increased Peak Detection
Accuracy in over-Dispersed ChIP-Seq Data with Supervised Segmentation Models” BMC Bioin-

formatics 22 (1): 1-18.

Maidstone, Robert, Toby Hocking, Guillem Rigaill, and Paul Fearnhead. 2017. “On Optimal Multiple
Changepoint Algorithms for Large Data.” Statistics and Computing 27 (2): 519-33.

Malladi, Rakesh, Giridhar P. Kalamangalam, and Behnaam Aazhang. 2013. “Online Bayesian Change
Point Detection Algorithms for Segmentation of Epileptic Activity” 2013 Asilomar Conference on
Signals, Systems and Computers, 1833-37.

Naoki, Itoh, and Juergen Kurths. 2010. “Change-Point Detection of Climate Time Series by Nonpara-
metric Method” Lecture Notes in Engineering and Computer Science 2186 (October).

Olshen, Adam, E. S. Venkatraman, Robert Lucito, and Michael Wigler. 2004. “Circular Binary
Segmentation for the Analysis of Array-Based DNA Copy Number Data” Biostatistics (Oxford,
England) 5 (November): 557-72. https://doi.org/10.1093/biostatistics/kxh008.

Picard, Franck, Stephane Robin, Marc Lavielle, Christian Vaisse, and Jean-Jacques Daudin. 2005. “A
Statistical Approach for Array CGH Data Analysis” BMC Bioinformatics 6: np. https://doi.org/10.
1186/1471-2105-6-27.

Radke, R.J., S. Andra, O. Al-Kofahi, and B. Roysam. 2005. “Image Change Detection Algorithms: A
Systematic Survey.” IEEE Transactions on Image Processing 14 (3): 294-307. https://doi.org/10.
1109/TIP.2004.838698.

Ranganathan, Ananth. 2012. “PLISS: Labeling Places Using Online Changepoint Detection.” Auton.
Robots 32 (4): 351-68. https://doi.org/10.1007/s10514-012-9273-4.

Reeves, Jaxk, Jien Chen, Xiaolan L. Wang, Robert Lund, and Qi Qi Lu. 2007. “A Review and Compari-
son of Changepoint Detection Techniques for Climate Data” Journal of Applied Meteorology and
Climatology 46 (6): 900-915. https://doi.org/10.1175/JAM2493.1.

Rigaill, Guillem. 2010. “A Pruned Dynamic Programming Algorithm to Recover the Best Segmenta-
tions with 1 to K, Change-Points” https://doi.org/10.48550/ARXIV.1004.0887.

Runge, Vincent. 2020. “Is a Finite Intersection of Balls Covered by a Finite Union of Balls in Euclidean
Spaces?” Journal of Optimization Theory and Applications 187 (2): 431-47.

Rybach, David, Christian Gollan, Ralf Schluter, and Hermann Ney. 2009. “Audio Segmentation for
Speech Recognition Using Segment Features.” In 2009 IEEE International Conference on Acoustics,
Speech and Signal Processing, 4197-4200. https://doi.org/10.1109/ICASSP.2009.4960554.

Staudacher, Martin, Stefan Telser, Anton Amann, Hartmann Hinterhuber, and Monika Ritsch-Marte.
2005. “A New Method for Change-Point Detection Developed for on-Line Analysis of the Heart
Beat Variability During Sleep” Physica A-Statistical Mechanics and Its Applications 349: 582-96.

Truong, Charles, Laurent Oudre, and Nicolas Vayatis. 2020. “Selective Review of Offline Change
Point Detection Methods.” Signal Processing 167: 107299.

Verzelen, Nicolas, Magalie Fromont, Matthieu Lerasle, and Patricia Reynaud-Bouret. 2020. “Optimal
Change-Point Detection and Localization.” arXiv. https://doi.org/10.48550/ARXIV.2010.11470.

Yao, Yi-Ching. 1984. “Estimation of a Noisy Discrete-Time Step Function: Bayes and Empirical Bayes
Approaches” The Annals of Statistics 12 (4): 1434-47. https://doi.org/10.1214/a0s/1176346802.

———. 1988. “Estimating the Number of Change-Points via Schwarz’ Criterion.” Statistics & Probability
Letters 6 (3): 181-89. https://EconPapers.repec.org/RePEc:eee:stapro:v:6:y:1988:1:3:p:181-189.

Zhang, Nancy, and Siegmund David. 2007. “A Modified Bayes Information Criterion with Applications
to the Analysis of Comparative Genomic Hybridization Data” Biometrics 63 (April): 22-32.
https://doi.org/10.1111/j.1541-0420.2006.00662.x.

22

https://doi.org/10.1016/j.sigpro.2004.11.012
https://doi.org/10.1093/biostatistics/kxh008
https://doi.org/10.1186/1471-2105-6-27
https://doi.org/10.1186/1471-2105-6-27
https://doi.org/10.1109/TIP.2004.838698
https://doi.org/10.1109/TIP.2004.838698
https://doi.org/10.1007/s10514-012-9273-4
https://doi.org/10.1175/JAM2493.1
https://doi.org/10.48550/ARXIV.1004.0887
https://doi.org/10.1109/ICASSP.2009.4960554
https://doi.org/10.48550/ARXIV.2010.11470
https://doi.org/10.1214/aos/1176346802
https://EconPapers.repec.org/RePEc:eee:stapro:v:6:y:1988:i:3:p:181-189
https://doi.org/10.1111/j.1541-0420.2006.00662.x

	Introduction
	Functional Pruning for Multiple Time Series
	Model and Cost
	Functional Pruning Dynamic Programming Algorithm
	Geometric Formulation of Functional Pruning

	Geometric Functional Pruning Optimal Partitioning
	General Principle of GeomFPOP

	Approximation Operators \cap_{\tilde{Z}} and \setminus_{\tilde{Z}}
	S-type Approximation
	R-type Approximation

	Simulation Study of GeomFPOP
	The Number of Change Point Candidates stored over Time
	Empirical Time Complexity of GeomFPOP
	Empirical Time Complexity of a Randomized GeomFPOP
	Empirical Complexity of the Algorithm as a Function of p
	Run Time as a Function of the Number of Segments

	Acknowledgments
	Supplements
	Examples of Likelihood-Based Cost Functions
	Arrangement of Two p-balls in \mathbb R^p
	Intersection and Inclusion Tests
	Proof of Proposition
	Optimization Strategies for GeomFPOP (R-type)

	References

